Site Logo

Exe 1C

BASIC LEVEL

1. Estimation and Calculation for 218÷31

Estimation

To estimate 218÷31, we round both numbers to make the division simple:

  • Round 218 to the nearest hundred or a compatible number, 210 or 200.
  • Round 31 to the nearest ten, 30.

Using 210÷30:

Estimated Value=30210​=7

Is Seema’s answer reasonable?

No, Seema’s answer of 70.3 is not reasonable. Our estimated value is 7. The actual answer should be close to 7, not 70. Seema likely made a calculation error, perhaps by multiplying instead of dividing, or entering 2180÷31.

Actual Calculation

Using a calculator:

Actual Value=31218​≈7.0322…

Comparison:

Our estimated value of 7 is very close to the actual value of 7.0322….


2. Estimation and Calculation of Expressions

Estimation:

Round to the nearest compatible numbers: 2013≈2000 and 39≈40.

Estimated Value=2000×40=80,000

Actual Calculation:

Using a calculator:

Actual Value=2013×39=78,507

Comparison:

The estimated value of 80,000 is close to the actual value of 78,507.


Estimation:

145.6 ÷ \sqrt{65.4}

Round to the nearest compatible numbers:

  • 145.6≈150
  • 65.4 is very close to 64, and 64​=8.
    Estimated Value=150÷8
    Using simple division: 160÷8=20.
    So, 150÷8 is just under 20.
    Estimated Value≈18.75 (Or simply 19)

Actual Calculation:

Using a calculator:

Actual Value=145.6÷65.4​≈145.6÷8.0870…≈18.005

Comparison:

The estimated value of 18.75 (or 19) is close to the actual value of 18.005.


3. Significant Figures and Estimation

(i) Express to 2 Significant Figures (2 s.f.)

The first significant figure (s.f.) is the first non-zero digit. We look at the digit after the 2nd s.f. to round.

  • 3.612:
    • 1st s.f. is 3. 2nd s.f. is 6.
    • The digit after 6 is 1. Since 1<5, we round down.3.6 (2 s.f.)
  • 29.87:
    • 1st s.f. is 2. 2nd s.f. is 9.
    • The digit after 9 is 8. Since 8≥5, we round up the 9, which carries over to the 2.30 (2 s.f.)

(ii) Estimate 3.612÷29.87

Use the rounded values from part (i):

Estimated Value=3.6÷30

Estimated Value=0.12


4. Car Travel Estimation

Goal: Estimate Total Distance÷Distance per Litre.

Estimation:

Round the values to compatible numbers:

  • 274 km is close to 270 km.
  • 9.1 km/L is close to 9 km/L.

Calculation:

Estimated Litres=9270​

Estimated Litres=30


5. Square Tablecloth Length

/k

Reasoning:

Since the tabletop is square, the side length (s) is the square root of the area (A).

s=A s = \sqrt{A}

Calculation:

s=6400​s=64×100​s=64​×100​s=8×10s=80 cm
s=A s = \sqrt{6400}
s=A s = \sqrt{64 x 1000}


6. Smallest Number to Make a Perfect Square

Step 1: Find the prime factorization of 216.

216=2×108216=2×2×54216=2×2×2×27216=2×2×2×3×3×3216=23×33

Step 2: Identify the factors with odd exponents.

For a number to be a perfect square, all exponents in its prime factorization must be even. In 23×33, both 2 and 3 have an odd exponent (3).

Step 3: Determine the smallest divisor.

To make the exponents even, we need to divide by the product of the base numbers that have odd exponents.

Divisor=2×3=6

Verification:

216÷6=36

Since 36=62, which is a perfect square, the smallest number is 6.


7. Gardener’s Plants in a Square Formation

Interpretation: The question is poorly phrased. It says he plants trees in a square formation AND that he plants 25 trees in a row. This must mean the formation is a square with 25 trees on each side.

Calculation:

For a square formation with s trees in a row, the total number of trees is s2.

Total Trees=25×25=625


8. Ratio of Areas (Estimation)

Reasoning:

The image shows a larger, roughly rectangular/square region with an irregularly shaped shaded region within it. We must visually estimate the fraction of the total area covered by the shaded part.

  1. Visually divide the entire figure into smaller, equal blocks.
  2. The shaded region appears to occupy approximately 1 small block.
  3. The unshaded region appears to occupy approximately 3 small blocks.
  4. The ratio of Shaded Area:Unshaded Area is approximately 1:3.

Estimated Ratio=1:3


9. Arranging Numbers in Ascending Order

Ascending order means from smallest (most negative) to largest (most positive).

  1. Identify the smallest negative: −14.12
  2. Compare remaining negatives: −1.8 and −1.5.
  3. Arrange the positives: 0.5,7.25,13.1.

−14.12,−1.8,−1.5,0.5,7.25,13.1

  1. Identify the smallest negative: −13.47
  2. Compare remaining negatives: −0.134.
  3. Arrange the positives: 0.134,1.34,134.7,1347.

−13.47,−0.134,0.134,1.34,134.7,1347


10. Arranging Numbers in Descending Order

Descending order means from largest (most positive) to smallest (most negative).

  1. Identify the largest positive: 17.6
  2. Arrange the remaining positives/zero: 1.76,0.
  3. Compare the negatives: −7.8,−15.5,−18.2.

17.6,1.76,0,−7.8,−15.5,−18.2

  1. Identify the largest positive: 25.4
  2. Arrange the remaining positives: 9.3,2.54,0.13.
  3. Compare the negatives: −0.55,−9.3.

25.4,9.3,2.54,0.13,−0.55,−9.3


11. Finding Square Roots

(a) Find the square of the following numbers.

(i) 232 = 529

(ii) 2122 = 44,944


(b) Find the square root of the following numbers.

(i) 361​=19

(ii) 576​=24

(iii) 16.81​=4.1 (Since 412=1681)

(iv) 784​=28

(v) 5.29​=2.3 (Since 232=529)

(vi) 2.89​=1.7 (Since 172=289)

(vii) 484​=22

(viii) 65.61​=8.1 (Since 812=6561)

(ix) 441900​​=441​900​​=2130​=710​≈1.4286


12. Shopkeeper’s Order (Total Cost Estimation)

ItemQuantityCost per item (PKR)
Candies3218
Balloons188
Chips4726
Biscuits6323
Ribbons529

Step 1: Estimate the cost for each item by rounding Quantity and Cost per item.

ItemEstimated QuantityEstimated Cost/ItemEstimated Subtotal
Candies302030×20=600
Balloons201020×10=200
Chips503050×30=1500
Biscuits602060×20=1200
Ribbons501050×10=500

Step 2: Estimate the Total Amount.

Estimated Total=600+200+1500+1200+500=4000

Step 3: Round the estimate to the nearest hundred rupees.

The estimated total of 4000 is already a multiple of 100.

Estimated Total (to the nearest hundred rupees)=4000 PKR


13. Currency Conversion Estimation

Step 1: Round the conversion rate to 1 significant figure.

RM 1=PKR 52.2588≈PKR 50

Step 2: Estimate the total price.

Estimated Price in PKR=Cost in RM×Rounded RateEstimated Price=25×50Estimated Price=1250 PKR


14. Best Value Calculation

Option A: 300 g for PKR 580

Round the price: 580≈600.

Estimated Cost per 100 g=3600​=PKR 200

Option B: 500 g for PKR 990

Round the price: 990≈1000.

Estimated Cost per 100 g=51000​=PKR 200

Conclusion:

Since both options estimate to PKR 200 per 100 g, they are very similar in value. We check the exact values (mentally, 580/3≈193 and 990/5=198). Since PKR 580 is slightly cheaper for 300 g than PKR 600 would be, Option A is slightly better value.

Option A offers slightly better value for money (Estimated cost per 100 g is ≈PKR 193 vs PKR 198 for Option B).


15. Sale Discount Calculation

Shop A: PKR 79.50 with 20% Discount

Estimation: Round PKR 79.50≈PKR 80.

A 20% discount means you pay 80% of the price.

Discount≈20% of 80=0.2×80=16

Estimated Final Price (A)≈80−16=PKR 64

Shop B: PKR 69.50 with 10% Discount

Estimation: Round PKR 69.50≈PKR 70.

A 10% discount means you pay 90% of the price.

Discount≈10% of 70=0.1×70=7

Estimated Final Price (B)≈70−7=PKR 63

Conclusion:

Since PKR 63 is less than PKR 64, Shop B is cheaper.


16. Handbag Currency Conversion

Step 1: Round the amount and the rate to 1 significant figure.

  • 26 700 KRW≈30 000 KRW
  • PKR 0.18≈PKR 0.2

Step 2: Estimate the price in PKR.

Estimated Price=Rounded KRW×Rounded RateEstimated Price=30 000×0.2Estimated Price=30 000×102​

Estimated Price=3 000×2=6000

The estimated price of the handbag in PKR is 6000 PKR

Leave a Comment

Your email address will not be published. Required fields are marked *

Scroll to Top